32 research outputs found

    World radiocommunication conference 12 : implications for the spectrum eco-system

    Get PDF
    Spectrum allocation is once more a key issue facing the global telecommunications industry. Largely overlooked in current debates, however, is the World Radiocommunication Conference (WRC). Decisions taken by WRC shape the future roadmap of the telecommunications industry, not least because it has the ability to shape the global spectrum allocation framework. In the debates of WRC-12 it is possible to identify three main issues: enhancement of the international spectrum regulatory framework, regulatory measures required to introduce Cognitive Radio Systems (CRS) technologies; and, additional spectrum allocation to mobile service. WRC-12 eventually decided not to change the current international radio regulations with regard to the first two issues and agreed to the third issue. The main implications of WRC-12 on the spectrum ecosystem are that most of actors are not in support of the concept of spectrum flexibility associated with trading and that the concept of spectrum open access is not under consideration. This is explained by the observation that spectrum trading and spectrum commons weaken state control over spectrum and challenge the main principles and norms of the international spectrum management regime. In addition, the mobile allocation issue has shown the lack of conformity with the main rules of the regime: regional spectrum allocation in the International Telecommunication Union (ITU) three regions, and the resistance to the slow decision making procedures. In conclusion, while the rules and decision-making procedures of the international spectrum management regime were challenged in the WRC-12, the main principles and norms are still accepted by the majority of countries

    Geochemistry, geochronology, and Sr–Nd isotopes of the Late Neoproterozoic Wadi Kid volcano-sedimentary rocks, Southern Sinai, Egypt: Implications for tectonic setting and crustal evolution

    No full text
    The Kid Group is one of the few exposures of Neoproterozoic metavolcano-sedimentary rocks in the basement of southern Sinai in the northernmost Arabian–Nubian Shield. It is divided into the mostly metamorphosed volcaniclastic Melhaq and siliciclastic Um Zariq formations in the north and the mostly volcanic Heib and Tarr formations in the south. The Heib, Tarr, and Melhaq formations reflect an intense episode of igneous activity and immature clastic deposition associated with core-complex formation during Ediacaran time, but Um Zariq metasediments are relicts of an older (Cryogenian) sedimentary sequence. The latter yielded detrital zircons with concordant ages as young as 647 ± 12 Ma, which may indicate that the protolith of Um Zariq schist was deposited after ~ 647 Ma but 19 concordant zircons gave a 206Pb/238U weighted mean age of 813 ± 6 Ma, which may represent the maximum depositional age of this unit.In contrast, a cluster of 11 concordant detrital zircons from the Melhaq Formation yield a weighted mean 206Pb/238U age of 615 ± 6 Ma. Zircons from Heib Formation rhyolite clast define a 206Pb/238U weighted mean age of 609 ± 5 Ma, which is taken to approximate the age of Heib and Tarr formation volcanism. Intrusive syenogranite sample from Wadi Kid yields a 206Pb/238U weighted mean age of 604 ± 5 Ma. These constraints indicate that shallow-dipping mylonites formed between 615 ± 6 Ma and 604 ± 5 Ma. Geochemical data for volcanic samples from the Melhaq and Heib formations and the granites show continuous major and trace element variations corresponding to those expected from fractional crystallization. The rocks are enriched in large ion lithophile and light rare earth elements, with negative Nb anomalies. These reflect magmas generated by melting of subduction-modified lithospheric mantle, an inference that is further supported by εNd(t) = + 2.1 to + 5.5.This mantle source obtained its trace element characteristics by interaction with fluids and melts from subducting oceanic crust during the Late Cryogenian time, prior to terminal collision between fragments of East and West Gondwana at ~ 630 Ma. Positive εNd(t) values and the absence of pre-Ediacaran zircons in all but Um Zariq metasediments indicate minor interaction with Cryogenian and older crust. A model of extensional collapse following continental collision, controlled mainly by lithospheric delamination and slab break-off is suggested for the origin of the post-collision volcanics and granites at Wadi Kid. No evidence of pre-Neoproterozoic sources was found. Kid Group Ediacaran volcanic rocks are compositionally and chronologically similar to the Dokhan Volcanics of NE Egypt, which may be stratigraphic equivalents
    corecore